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We begin with the binomial theorem:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

The binomial theorem follows from considering the coefficient of xkyn−k, which is the number of
ways of choosing x from k of the n terms in the product and y from the remaining n−k terms, and
is thus

(
n
k

)
. One can also prove the binomial theorem by induction on n using Pascal’s identity.

The binomial theorem is a useful fact. For example, we can use the binomial theorem with x = −1
and y = 1 to obtain

0 = (1− 1)n =
n∑

k=0

(−1)k
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)
.

Thus, the even binomial coefficients add up to the odd coefficients for n ≥ 1.
The inclusion-exclusion principle is an important tool in counting.
Note that if we have two finite sets A1 and A2, then

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|. (1)

This is because every element is either not in A1 nor in A2, in A1 but not in A2, in A2 but not
in A1, or in A1 ∪A2. In each of the four cases, they are counted the same number of times on the
left and right side of the equation, giving the equality.

We can iteratively apply Equation (1). For example, the next case says that

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|. (2)

We obtain this by substituting in A1 ∪A2 and A3 into Equation (1), and then apply Equation
(1) two more times:

|(A1 ∪A2) ∪A3| = |A1 ∪A2|+ |A3| − |(A1 ∪A2) ∩A3|
= |A1 ∪A2|+ |A3| − |(A1 ∩A3) ∪ (A2 ∩A3)|
= (|A1|+ |A2| − |A1 ∩A2|) + |A3| − (|A1 ∩A3|+ |A2 ∩A3| − |(A1 ∩A3) ∩ (A2 ∩A3)|)
= |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|.

Generalizing, we can use induction on n to obtain the inclusion-exclusion principle:
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|
n⋃

i=1

Ai| =

n∑
i=1

|Ai| −
∑

1≤i<j≤n
|Ai ∩Aj |+

∑
1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − · · · − (−1)n|
n⋂

i=1

Ai|

=
∑

S⊂[n],S 6=∅

(−1)|S|+1|
⋂
i∈S

Ai|.

Another way to obtain the inclusion-exclusion principle is to notice that each element x con-
tributes the same number to each side of the equation. Suppose S ⊂ [n] is the set of i for which
x ∈ Ai. If S is empty, so that x is none of the Ai, then x contributes 0 to both sides. Otherwise,
x contributes 1 to the left hand side, and k −

(
k
2

)
+
(
k
3

)
− · · · − (−1)k

(
k
k

)
=
∑k

i=1(−1)i+1
(
k
i

)
= 1 by

the consequence of the binomial theorem discussed above.
A fixed point of a function f : X → X which maps a set X to itself is an element x such that

f(x) = x. A permutation π : [n] → [n] with no fixed point is known as a derangement. We can
count the number Dn of derangements of [n] using the inclusion-exclusion principle. Let Ai be the
set of permutations π of [n] with π(i) = i, i.e., with i as a fixed point. Then

⋃n
i=0Ai is the set

of permutations of [n] with at least one fixed point, and so n! − |
⋃n

i=0Ai| is the number Dn of
derangements of [n]. By the inclusion-exclusion principle, we have

n⋃
i=0

Ai =
∑

S⊂[n],S 6=∅

(−1)|S|+1|
⋂
i∈S

Ai|.

Note that
⋂

i∈S Ai is the set of permutations of [n] with each i ∈ S mapping to itself. There are
(n− |S|)! such permutations as they just permute the n− |S| elements of [n] \S. Also, the number
of S with |S| = k is

(
n
k

)
. We have

(
n
k

)
(n− k)! = n!

k!(n−k)!(n− k)! = n!/k!. Hence,∣∣∣∣∣
n⋃

i=0

Ai

∣∣∣∣∣ =

n∑
k=1

(−1)k+1n!/k!.

and

Dn = n!−
n⋃

i=0

Ai = n!−
n∑

k=1

(−1)k+1n!/k! =

n∑
k=0

(−1)kn!/k! = n!

n∑
k=0

(−1)k

k!
.

You may remember from calculus that
∑n

k=0
zk

k! is the Taylor series approximation for ez. Substi-
tuting in z = −1, the number of derangements of [n] is very close to n!/e. Hence, the probability
that a random permutation is a derangement is very close to 1/e.
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